
Integer weight training by differential evolution

algorithms

V.P. Plagianakos, D.G. Sotiropoulos, and M.N. Vrahatis

University of Patras, Department of Mathematics, GR-265 00, Patras, Greece.

e-mail: vpp|dgs|vrahatis@math.upatras.gr.

Abstract

In this work differential evolution strategies are
applied in neural networks with integer weights
training. These strategies have been intro-
duced by Storn and Price [Journal of Global
Optimization, 11, pp. 341–359, 1997]. Inte-
ger weight neural networks are better suited for
hardware implementation as compared with their
real weight analogous. Our intention is to give
a broad picture of the behaviour of this class of
evolution algorithms in this difficult task. Sim-
ulation results show that this is a promising ap-
proach.

1 Introduction

An artificial Feedforward Neural Network (FNN)
consists of many interconnected identical simple
processing units, called neurons. Each neuron
calculates the dot product of the incoming signals
with its weights, adds the bias to the resultant,
and passes the calculated sum through the acti-
vation function. In a multilayer feedforward net-
work the neurons are organized into layers with
no feedback connections.

FNNs can be simulated in software, but in or-
der to be utilized in real life applications, where
fast speed of execution is required, hardware im-
plementation is needed. The natural implemen-
tation of an FNN – because of its modularity – is
a parallel one. The problem is that the conven-
tional multilayer FNNs, which have continuous
weights is expensive to implement in digital hard-
ware. Another major implementation obstacle is
the weight storage. FNNs having integer weights

and biases are easier and less expensive to imple-
ment in electronics as well as in optics and the
storage of the integer weights is much easier to
achieved.

A typical FNN consisting of L layers, where
the first layer denotes the input, the last one, L,
is the output, and the intermediate layers are the
hidden layers. It is assumed that the (l-1) layer
has Nl−1 neurons. Neurons operate according to
the following equations

netlj =

Nl−1
∑

i=1

w
l−1,l
ij yl−1

i + θl
j, yl

j = σl
(

netlj

)

,

where w
l−1,l
ij is the connection weight from the

ith neuron at the (l − 1) layer to the j-th neu-
ron at the lth layer, yl

i is the output of the ith
neuron belonging to the lth layer, θl

j denotes
the bias of the j-th neuron at the lth layer,
and σ is a nonlinear activation function. The
weights in the FNN can be expressed in vector
notation. Let the weight vector have the form:
w = (w1, w2, . . . , wN). The weight vector in gen-
eral defines a point in the N–dimensional real
Euclidean space IRN , where N denotes the to-
tal number of weights and biases in the network.
Throughout this paper w is considered to be the
vector of the integer weights and biases.

From the optimization point of view, super-
vised training of an FNN is equivalent to min-
imizing a global error function which is a mul-
tivariate function that depends on the weights
in the network. The square error over the set
of input–desired output patterns with respect to
every weight, is usually taken as the function to
be minimized. Specifically, the error function for

an input pattern t is defined as follows:

ej(t) = yL
j (t) − dj(t), j = 1, 2, . . . , NL,

where dj(t) is the desired response of an output
neuron at the input pattern t. For a fixed, finite
set of input-desired output patterns, the square
error over the training set which contains T rep-
resentative pairs is :

E(w) =
T

∑

t=1

Et(w) =
T

∑

t=1

NL
∑

j=1

e2
j (t),

where Et(w) is the sum of the squares of errors
associated with pattern t. Minimization of E is
attempted by using a training algorithm to up-
date the weights. The updated weight vector de-
scribes a new direction in which the weight vector
will move in order to reduce the network train-
ing error. Efficient training algorithms have been
proposed for trial and error based training, but
it is difficult to use them when training with dis-
crete weights [3].

In this work a differential evolution approach,
as explained in Section 2, has been utilized to
train a neural network with integer weights,
suitable for hardware implementation. A brief
overview of the most used differential evolution
strategies is also presented. Experiments and
computer simulation results are presented in Sec-
tion 3. The final section contains concluding re-
marks and a short discussion for future work.

2 Differential Evolution Train-

ing

In a recent work, Storn and Price [5] have pre-
sented a novel minimization method, called Dif-
ferential Evolution (DE), which has been de-
signed to handle non-differentiable, nonlinear,
and multimodal objective functions. To fulfill
this requirement, DE has been designed as a sto-
chastic parallel direct search method which uti-
lizes concepts borrowed from the broad class of
evolutionary algorithms, but requires few easily
chosen control parameters. Experimental results
have shown than DE has good convergence prop-
erties and outperforms other evolutionary algo-
rithms.

In order to apply DE in neural network train-
ing with integer weights, we start with a specific
number (NP) of N -dimensional integer weight
vectors, as an initial weight population, and
evolve them over time. NP is fixed throughout
the training process. The weight population is
initialized with random integers from the inter-
val [−∆,∆] following a uniform probability dis-
tribution. At each iteration, called generation,
new weight vectors are generated by the combi-
nation of weight vectors randomly chosen from
the population and the outcome is rounded to
the nearest integer. This operation is called mu-

tation. The outcoming integer weight vectors are
then mixed with another predetermined integer
weight vector – the target weight vector – and
this operation is called crossover. This operation
yields the so-called trial weight vector, which is
an integer vector. The trial vector is accepted for
the next generation if and only if it reduces the
value of the error function E. This last operation
is called selection.

We now briefly review the two basic DE op-
erators used for integer weight FNN training.
The first DE operator we consider is muta-
tion. Specifically, for each weight vector wi

g,
i = 1, . . . , NP , where g denotes the current gen-
eration, a new vector vi

g+1 (mutant vector) is gen-
erated according to one of the following relations:

vi
g+1 =wr1

g + µ
(

wr1

g − wr2

g

)

, (1)

vi
g+1 =wbest

g + µ
(

wr1

g − wr2

g

)

, (2)

vi
g+1 =wr1

g + µ
(

wr2

g − wr3

g

)

, (3)

vi
g+1 =wi

g + µ
(

wbest
g − wi

g

)

+ µ
(

wr1

g − wr2

g

)

, (4)

vi
g+1 =wbest

g + µ
(

wr1

g − wr2

g

)

+ µ
(

wr3

g − wr4

g

)

, (5)

vi
g+1 =wr1

g + µ
(

wr2

g − wr3

g

)

+ µ
(

wr4

g − wr5

g

)

, (6)

where µ > 0 is a real parameter, called mutation
constant, which controls the amplification of the
difference between two weight vectors and

r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i − 1, i + 1, . . . , NP} ,

are random integers mutually different and dif-
ferent from the running index i. Obviously, the
mutation operator results a real weight vector.
As our aim is to maintain an integer weight pop-
ulation at each generation, each component of
the mutant weight vector is rounded to the near-
est integer.

2

Relation (1) has been introduced as crossover
operator for genetic algorithms [4] and is similar
to relations (2) and (3). The remaining relations
are modifications which can be obtained by the
combination of (1), (2) and (3). It is clear that
more such relations can be generated using the
above ones as building blocks.

To increase further the diversity of the rounded
mutant weight vector, the crossover operator is
applied. Specifically, for each integer component
j (j = 1, 2, . . . , N) of the mutant weight vector
vi
g+1, we randomly choose a real number r from

the interval [0, 1]. Then, we compare this number
with ρ (crossover constant), and if r ≤ ρ we select
as the j-th component of the trial vector ui

g+1 the
corresponding component j of the mutant vector
vi
g+1. Otherwise, we pick the j-th component

of the integer target vector wi
g+1. It must be

noted that the result of this operation is again
an integer vector.

3 Functionality Tests

A set of three learning test problems – XOR, 3-
Bit Parity, and the encoder/decoder problems
– has been used for testing the functionality,
and computer simulations have been developed
to study the performance of the DE training
algorithms. The simulations have been carried
out on a Pentium 133MHz PC IBM compati-
ble using MATLAB version 5.01. For each of
the test problems we present a table summariz-
ing the performance of the DE algorithms using
different mutation rules. We call DE1 the algo-
rithm that uses relation (1) as mutation operator,
DE2 the algorithm that uses relation (2), and so
on. The reported parameters for simulations that
reached solution are: min the minimum num-
ber of error function evaluations, mean the mean
value of error function evaluations, max the max-
imum number of error function evaluations, s.d.

the standard deviation of error function evalu-
ations, and succ. simulations succeeded out of
100 within the generation limit maxgen. When
an algorithm fails to converge within the maxgen

limit is considered that it fails to train the FNN
and its error function evaluations are not in-

cluded in the statistical analysis of the algo-
rithms.

For all the simulations we used bipolar input
and output vectors and hyperbolic tangent acti-
vation functions in both the hidden and output
layer neurons. We made no effort to tune the
mutation and crossover parameters, µ and ρ re-
spectively. Fixed values (µ = 0.5 and ρ = 0.7)
were used instead. The weight population was
initialized with random integers from the inter-
val [−∆,∆]. Despite the fact that initial weights
with ∆ > 1 often helped the algorithms to con-
verge faster, for the simulations we used ∆ = 1
because our intention was to train the network
with weights as small as possible.

The weight population size NP was chosen to
be two times the dimension of the problem, i.e.
NP = 2N , for all the simulations. Some experi-
mental results have shown that a good choice for
NP is 2N ≤ NP ≤ 4N . It is obvious that the
exploitation of the weight space is more effective
for large values of NP , but sometimes more error
function evaluations are required. On the other
hand, small values of NP make the algorithm
inefficient and more generations are required in
order to converge to the minimum.

3.1 The Exclusive-OR Problem

The first test problem we will consider is the
exclusive-OR (XOR) Boolean function, which is
a difficult classification problem and thus a good
benchmark. The XOR function maps two bi-
nary inputs to a single binary output. A 2-2-
1 FNN (six weights, three biases) was used for
these simulations and the training was stopped
when the value of the error function E, was
E ≤ 0.01 within maxgen = 100 generations.
The population size was NP = 18. The results
of the simulation are shown in Table 1. A typ-
ical weight vector after the end of the training
proccess is w = (2,−3,−2, 2, 3, 3,−2,−2, 2) and
the corresponing value of the error function was
E = 0.003. The six first components of the above
vector are the weights and the remaining three
are the biases. For this problem DE1, DE3 and
DE6 have shown excellent performance. The suc-
cess rates of all strategies are better than any

3

Algorithm min mean max s.d. succ.

DE1 108 547.9 1332 268.1 91%
DE2 60 180.5 500 91.0 80%
DE3 126 551.7 1656 281.5 95%
DE4 120 271.7 940 133.9 82%
DE5 90 283.6 1530 256.2 81%
DE6 126 720.9 1782 387.2 93%

NP = 18, µ = 0.5, ρ = 0.7, maxgen = 100

Table 1: Results of simulations for the XOR
problem

Algorithm min mean max s.d. succ.

DE1 660 1721.2 2910 640.4 72%
DE2 150 517.4 1980 298.2 97%
DE3 900 2004.4 2910 561.6 81%
DE4 300 768.2 2040 379.5 99%
DE5 180 732.1 2430 472.9 89%
DE6 600 2115.6 2970 645.4 50%

NP = 32, µ = 0.5, ρ = 0.7, maxgen = 100

Table 2: Results of simulations for the 3-Bit par-
ity problem

other well-known continuous weight training al-
gorithm, as far as we know.

3.2 3-Bit Parity

The second test problem is the parity problem,
which can be considered as a generalized XOR
problem but it is more difficult. The task is
to train a neural network to produce the sum,
mod 2, of 3 binary inputs – otherwise known as
computing the “odd parity” function. We use a
3-3-1 FNN (twelve weights, four biases) in order
to train the 3-Bit Parity problem. The initial
population consists of 32 weight vectors. The
results of the computer simulation are summa-
rized in the Table 2. A typical weight vector
after the end of the training proccess is w =
(1,−3, 1,−2, 2, 2,−3,−4, 3, 3, 2,−3,−1, 0,−1, 0)
and the corresponing value of the error function
was E = 0.009.

3.3 4-2-4 Encoder/Decoder

The last test problem we considered is the 4-2-4
encoder/decoder. The network is presented with
4 distinct input patterns, each having only one
bit turned on. The task is to duplicate the input
pattern in the output units. Since all information
must flow through the hidden units, the network
must develop a unique encoding for each of the
4 patterns in the 2 hidden units and a set of
connection weights performing the encoding and
decoding operations. This problem was selected
because it is quite close to real world pattern
classification tasks, where small changes in the
input pattern cause small changes in the output
pattern [1]. Table 3 summarizes the results.

Algorithm min mean max s.d. succ.

DE1 2640 2838.0 3036 280.1 2%
DE2 448 912.7 4096 569.4 84%
DE3 1984 4501.3 6272 1098.6 60%
DE4 512 1026.6 3776 438.6 100%
DE5 246 1192.5 4092 757.2 78%
DE6 3136 4640.0 6272 956.7 18%

NP = 64, µ = 0.5, ρ = 0.7, maxgen = 100

Table 3: Results of simulations for the 4-2-4 En-
coder/Decoder problem

4 Concluding Remarks

In this work, DE based algorithms for integer
weight neural network training are introduced.
The performance of these algorithms has been
examined and simulation results from some clas-
sical test problems have been presented. Sum-
marizing the simulations, we can conclude that
algorithm DE4 is definitely the best choice for the
examined problems. On the other hand, even the
algorithm DE1, based on the simple strategy (1),
performed well in low dimensional problems.

Customized DE operators have been applied
on the population of integer weight vectors, in
order to evolve them over time and exploit the
weight space as wide as possible. The results in-
dicate that these algorithms are promising and
effective, even when compared with other well-

4

known algorithms that require the gradient of
the error function and train the network with
real weights. These operators have been de-
signed keeping in mind that the resulting integer
weights require less bits in order to be stored and
the digital arithmetic operations between them
are easier to be implemented in hardware. Fur-
thermore, it is known that the hardware imple-
mentation of the backward passes, which com-
pute the gradient of the error function is more
difficult. That is why all the proposed algorithms
require only forward passes (resulting the value
of the error function).

For all the test problems we considered, no
choice of the parameters was needed in order to
obtain optimal or at least nearly optimal conver-
gence speed. The parameters had fixed values
and we made no effort to tune them, but one
can try to tune the µ, ρ and NP parameters
to achieve better results, i.e. less error function
evaluations and/or exhibit higher success rates.

More sophisticated rules must be designed in
order to constrain the weights in a specific set
of integers and to reduce the amount of mem-
ory required for weight storage in digital elec-
tronic implementations. Future work also in-
cludes evaluation of the generalization perfor-
mance on well-known classification benchbarks,
optimization of the algorithm’s performance, and
exhausting simulations on bigger and more com-
plex real-life training tasks.

References

[1] S. Fahlman, An empirical study of learning

speed in back-propagation networks, Techni-
cal Report CMU-CS-88-162, Carnegie Mel-
lon University, Pittsburgh, PA 15213, Sep-
tember 1988.

[2] A.H. Khan and E.L. Hines, Integer-

weight neural nets, Electronics Letters, 30,
1237-1238, (1994).

[3] A.H. Khan, Feedforward Neural Networks

with Constrained Weights, Ph. D. disserta-
tion, Univ. of Warwick, Dept. of Engineer-
ing, (1996).

[4] Z. Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs,
Springer-Verlag, (1996).

[5] R. Storn and K. Price, Differential Evo-

lution – A Simple and Efficient Heuristic

for Global Optimization over Continuous

spaces, Journal of Global Optimization, 11,
341–359, (1997).

5

